

Clustering Sentence Level Text using Hierarchical FRECCA Algorithm

Mujawar Nilofar Shabbir¹, Prof. Amrit Priyadarshi²

PG Scholar, Department of Information Technology, DGOI, FOE, Bhigwan, Savitribai Phule Pune University, India¹ Assistant Professor, Department of Computer Engg., DGOI, FOE, Bhigwan, Savitribai Phule Pune University, India²

Abstract: Text Processing is essential to organize data or to extract needful information from a heap of available Big Data. Sentence clustering is one of the processes used in Text mining task. Text document may contain Hierarchical structure which relate to more than one theme at a same time. Hence Hierarchical Fuzzy Clustering Algorithm can be used for clustering such text data. The paper presents a novel Hierarchical Fuzzy Relational Eigenvector Centralitybased Clustering (HFRECC) Algorithm which is extension of FRECCA Algorithm. It solves the problems like complexity, sensitivity and changeability of clusters and is useful for natural language document (NLP) and operates in Expectation-Maximization Framework and is capable to identify overlapping clusters. The algorithm uses graph representation of data and works on relational data provided viz., data in pairwise similarities among data objects.

Keywords: HFRECCA, FRECCA, Page-rank, Sentence clustering, Expectation-Maximization.

I. INTRODUCTION

Clustering organizes the documents to improve browsing objects and the weighted edges for denoting the similarity and information retrieval. Clustering sentence is important between objects. For each node cluster membership values area of text processing and text mining which helps in are assigned which shows the degree to which object knowledge discovery. Clustering, groups similar data represented by that node belong to each respective clusters objects together and helps to discover the hidden and the probability of object being generated by that similarity, main concepts and summarizes a large amount component is shown by mixing coefficient. This can be of text into groups. Most of the documents contain interrelated themes or terms and many sentences are interrelated in some degree to these. In many Natural Language in some of clusters. To determine the model parameters Processing (NLP) tasks Clustering algorithms are used. They are popular and effective to use and discover similar groups of linguistic objects. In generally clustering algorithms can be classified into two categories as hard clustering and soft (fuzzy) clustering. In hard clustering, each data element is included in a single cluster group. Perhaps in soft clustering, data elements belong to more than single cluster. The work here deals with the ability to capture such Fuzzy relationships and scope of sentence clustering to solve it. It also solves the problem of content overlapping. Clustering documents in Information Retrieval is achieved by many clustering algorithms, but clustering text at sentence level is efficiently performed using Fuzzy Algorithm. The assumption of measuring In sentence level text clustering [1], the common similarity within documents or sentences based on word technique used is based on the statistical analysis of either co-occurrences lead to many of the sentence similarity measures. These measures are not sufficient to represent used in text clustering since sentences may be related to sentences in common metric space; hence the topic of interest is Fuzzy Relational Clustering, based on pairwise deal with patterns belonging to more than one cluster. similarity on relational data inputs. The first Fuzzy PageRank algorithm and Expectation-Maximization are clustering algorithm which proved to be successful is used to measure graph centrality and to contract a Relational Fuzzy c-Means (RFCM) Algorithm. It operates complete fuzzy relational clustering algorithm. The on relational input data which requires relation to be algorithm is able to identify overlapping clusters hence Euclidean.

The paper represents use of a Fuzzy Relational Clustering The paper [2] proposed a statistical homogeneous attribute Algorithm. The use of graph representation is done here to which is quantifying and implements clustering, represent data objects in which nodes are used to represent SIMFINDER, which organizes minute pieces of text from

achieved by application of PageRank to each cluster and computing the PageRank score of an object as likelihood (i.e., mixing coefficient and membership values), the use of Expectation-Maximization (E-M) Framework is used. The result can be applied in any domain were the relationship between objects is expressed in terms of the pairwise similarity.

The paper proposes the Hierarchical Fuzzy Relational Eigenvector-Centrality based Clustering Sentence Level Text (HFRECCS), an extension of FRECCA used for clustering of sentence level text. The paper is structured in following way.

II. RELATED WORK

word or phrase. Fuzzy relational clustering algorithm is more than a single theme. Fuzzy relational algorithm can used in various texts mining processing.

one or multiple documents into tight clusters. The A. Page Rank approach implements linguistic features and complex Page Rank is used as a graph centrality measure and used clustering algorithm to construct sets of related sentences. to determine the importance of a particular node within Here homogeneous attributes is nothing but prediction that graph. Importance of node is also used as a measure based on shared words. The approach makes use of k-Mediods clustering techniques identifying meaningless 0 - 1 to every node in graph known as Page Rank Score. In data arriving from unstructured text and identifies only graph node represents Sentence and weighted edges high quality clusters. The vector space model in IR is represent similarity value between sentences. To formulate successful, as it is able to identify much of the semantic the cluster and optimize the values of parameters content in document-level text. As the documents that are PageRank can be used within the E-M Framework. mostly semantically related and are likely to contain many words which are in common, which are based on word cooccurrence as per the vector space model [3]. This is valid It tries to find the parameters of the probability distribution only for document level text, the assumption can't hold good for sentence level texts or short text fragments. Hence to solve this problem at sentence level, a number of sentence similarity measures are proposed [4].

The paper [5] proposed a novel measuring method which membership probabilities. The probabilities calculated is applicable for sentence fragments and short sentences. Instead of traditional vector space model, this method step. calculates the similarity based on distance model.

The paper [6] proposed a method that is performed in the correlation with related attribute measure space. In this they are shown into low-dimensional semantics. Clustering technique used here is spectral with Low computation cost. This method is applicable when the number of clusters is small.

III. PROBLEM STATEMENT

Document clustering is well established and renowned but if one has to cluster sentence level text it may cause problem as sentence may contain words related to more than a single theme. The paper implements an application which is used to clustering sentence level text. The algorithm uses a graphical representation of data and works within a framework of Expectation-Maximization. HFRECCA is able to identify clusters which can overlap semantically.

IV.PROPOSED SYSTEM

The proposed Hierarchical Fuzzy Relational Clustering Algorithm can solve the problems of complexity, sensitivity and changeability of clusters. This algorithm is extended from FRECCA. The proposed system is based on FRECCA Algorithm.

Input: User Query

Output: Fuzzy Relation and related sentences

The algorithm operates in an Expectation-Maximization framework and uses graph representation of data.

Proposed architecture is designed considering following modules:

A) PageRank B) EM algorithm C) FRECCA

D) HFRECCA

The detailed description of the modules of proposed system is as:

of centrality. The algorithm assigns numerical score from

B. E-M algorithm

with maximum likelihood of data objects. It is an iterative method used to find maximum likelihood parameters of model. Parameter estimation is main role of this algorithm. The E-step involves the computation of cluster from E-step are re-estimated with the parameters in M-

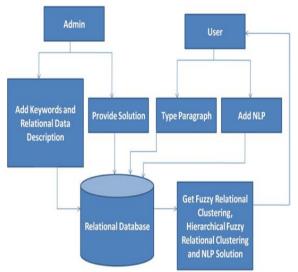


Fig. 1 Proposed System Architecture

C. FRECCA

Andrew Skabar and Khaled Abdalgader proposed a novel fuzzy relational clustering algorithm called FRECCA [1]. A fuzzy relational clustering approach is used to cluster sentence level text. The clustering helps to indicate the strength of the association among the data objects and partition the data items into the clusters. The data points represent the membership values assigned for each and every cluster. Many existing clustering technique has difficulties in handling extreme outliers data objects but fuzzy clustering algorithm can handle these outliers and give them very small membership degree in surrounding clusters. FRECCA operates in three steps as:

Initialization: - : random initialization and normalization of cluster membership. Also the Mixing coefficient is initialized.

Expectation: - Page Rank values get calculated.

Maximization: - updating the mixing coefficients found in E step

D. HFRECCA

Hierarchical clustering is used to partition the data into number of groups. Each group has a data that is similar in some sense to other [7]. An expectation-maximization (EM) algorithm is a repetitive process which depends on unobserved hidden variables. In the EM, the expectation (E) step creates a function to compute the cluster membership probabilities and maximization (M) step, in which these probabilities are then used to re-estimate the parameters. These parameter-estimates are then used to used to measure results are Partition Entropy Coefficient figure out the distribution of hidden variables in E step. This algorithm is divisive algorithms and begins with just Measure. only one cluster and then the single cluster splits into two or more clusters that have higher dissimilarity.

V. ALGORITHM

The algorithm has the following steps.

1. Initialization: random initialization and normalization of cluster membership. Also Mixing coefficient is initialized. 2. Expectation: Page Rank values get calculated 3. Maximization: updating the mixing coefficients found in E step

```
Algorithm 1. The FRECCA algorithm.
Input: Pairwise similarity values S = \{s_{ij} | i = 1, ..., N,
        j = 1, ..., N where s_{ij} is the similarity between
        sentences i and j. Number of clusters, C.
Output: Cluster membership values \{p_i^m | i = 1, ..., \}
         N, m = 1, \dots, C
  1. // INITIALIZATION
  2. // initialize and normalize membership values
 3. for i = 1 to N
         for m = 1 to C
  4.
              p_i^m = rnd
 5.
                                     // random number on [0, 1]
 6.
          end for
 7
          for m = 1 to C
            p_i^m = p_i^m / \sum_{j=1}^C p_i^j
 8
                                     // normalize
 9
         end for
10. end for
11. for m = 1 to C
12.
         \pi_m = 1/C
                                     // equal priors
13. end for
14. repeat until convergence
        / / EXPECTATION STEP
15.
        for m = 1 to C
16.
17.
           // create weighted affinity matrix for cluster m
18
           for i = 1 to N
19.
               for j = 1 to N
20.
                    w_{ij}^m = s_{ij} \times p_i^m \times p_j^m
21.
               end for
22
           end for
23.
           // calculate PageRank scores for cluster m
24.
           repeat until convergence
               PR_i^m = (1-d) + d \times \sum_{j=1}^N w_{ji}^m (PR_j^m / \sum_{k=1}^N w_{jk}^m)
25.
26.
           end repeat
27.
           // assign PageRank scores to likelihoods
           l_i^m = PR_i^m
28.
29.
        end for
30.
        Il calculate new cluster membership values
31.
        for i = 1 to N
32
           for m = 1 to C
               p_i^m = (\pi_m \times l_i^m) / \sum_{j=1}^C (\pi_j \times l_i^j)
33.
34.
           end for
35.
        end for
36.
        / / MAXIMIZATION STEP
        // Update mixing coefficients
37.
38.
        for m = 1 to C
                \pi_m = \frac{1}{N} \sum_{i=1}^N p_i^m
39.
40.
        end for
41. end repeat
```

Fig 2 FRECCA Algorithm

VI.RESULT ANALYSIS

Hierarchical fuzzy clustering is technique of cluster gathering. Each cluster is assigned with a membership value. The main drawback of FRECCA is time complexity. The work can be extended to cluster probabilistic data. The performance evaluation of the proposed HFRECCA clustering algorithm is based on certain performance metrics. The performance metrics (PE), Purity and Entropy, V-Measure, Rand Index and F-

M Cognizant & Verizon hiring 🛪	1084HEADJN	× Mihb	ox(24) - kuntilinen@g >	USER OPERATIONS	ж	New Page	× +				
🔶 🖲 localhost.000)/Cluster_Sentence_Level/VierMenu.html					∀ C'	Q, Search	\$	₫ 🖡	† -	1 9	1
Most Visited Getting Started MGm	al										
			We	lcome U	ser						
	1										
		View 1	Novel Fuzzy Re	elational Clus	tering S	entence Leve	el Text				
	+ CLUSTER ->1										
Clustering											
Inster Sentence Level Text	Related Contents- Fuzzy Relational-		mplicit or Explicit								
View Query Solution	Fuzzy Mining ->b	ook									
NLP Req	CLUNTER >2										
	Related Contents- Fuzzy Relational-		formation, descriptions								
	Fuzzy Mining ->k	nowledge									
	The Total page B										
	The Total page is	, book	5								
	Hirarchical of Clu										
	Related Contents-	College books :	Engineering nad Diplo	11 4							
	Fuzzy Relational-		st std to 10th std.								
	The Total page R										
			1770 X		_	1.1			2 e	1244	04.4

This is how the hierarchy of clusters is being created after application of the proposed system. Also users can add Query if any data searched is unavailable. The admin can update the database so as to be able to make searchable the keyword.

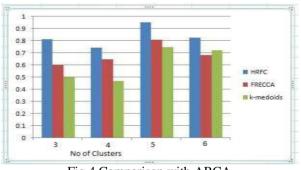


Fig 4 Comparison with ARCA

After comparing with ARCA, it is found that the performance of HFRECCA is superior. The dataset used can be dynamic ally added and used as per user convenience.

VII.CONCLUSION

Sentence clustering is one of best clustering technique for relational data inputs. Effectiveness of the algorithm is based on feature selection and accuracy of input. The algorithm can apply to asymmetric matrices and is not sensitive to cluster membership value initialization. The proposed HFRECC algorithm can be applicable to any

type of input relational data. It is used to analyse hierarchical relation between sentences. It can identify the overlapping clusters. Future objective is to extend the idea of probabilistic based fuzzy relational clustering algorithm.

ACKNOWLEDGEMENT

I would like to thank all people who help me in different way. Especially, I am thankful to my guide and P.G. coordinator **Prof. Amrit Priyadarshi** for his continuous support and guidance in my work. Also, I would like to thank H.O.D. of Computer Engineering Department, **Prof. Sayyad G. G.** for motivating me. Lastly, I thank to IJARCCE who have given opportunity to publish my paper.

REFERENCES

- A. Skabar and K. Abdalgader, "Clustering sentence-level text using a novel fuzzy relational clustering algorithm," Knowledge and Data Engineering, IEEE Transactions on, vol. 25, no. 1, pp. 62-75, 2013
- [2] V. Hatzivassiloglou, J. L. Klavans, M. L. Holcombe, R. Barzilay, M.Y. Kan, and K. McKeown, "Simfinder: A flexible clustering tool for summarization." Proceedings of the NAACL Workshop on Automatic Summarization, 2001
- [3] C.D. Manning, P. Raghavan, and H. Schutze, Introduction to Information Retrieval, Cambridge Univ. Press, 2008.
- [4] Y. Li, D. McLean, Z.A. Bandar, J.D. O'Shea, and K. Crockett, "Sentence Similarity Based on Semantic Nets and Corpus Statistics," IEEE Trans. Knowledge and Data Eng., vol. 8, no. 8, pp. 1138-1150, Aug. 2006.
- [5] Huang, G. and Sheng, J. 2012. Measuring Similarity between Sentence Fragments, 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, 978-0-7695-4721-3/12 \$26.00 ©2012 IEEE.
- [6] T. Zhang, Y. Y. Tang, B. Fang, and Y. Xiang, "Document clustering in correlation similarity measure space," Knowledge and Data Engineering, IEEE Transactions on, vol. 24, no. 6, pp. 1002-1013, 2012
- [7] Buckley, P. J. 1995."A Hierarchical Clustering Strategy for Very Large Fuzzy Databases", 0-7803-2559-1/95 \$4.00 0 IEEE.
- [8] Shehata, S., Karray, F. and Mohamed, S. Kamel, "An Efficient Concept-Based Mining Model for Enhancing Text Clustering" IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 10, 2010.
- [9] A.P. Dempster, N.M. Laird, and D.B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," J. the Royal Statistical Soc. Series B (Methodological), vol. 39, no. 1, pp. 1-38, 1977.